个人简历

张豹,武汉大学测绘学院空间信息研究所,副教授,博士生导师,测绘工程系副主任

研究领域:卫星大地测量与全球变化

研究方向:

(1)利用现代大地测量手段监测并理解陆地冰/水储量变化;

(2)利用GNSS技术监测大气水汽含量

联系方式:武汉大学信息学部测绘学院309

电子邮箱:sggzb@whu.edu.cn

bzhang@sgg.whu.edu.cn

主要从事卫星大地测量与全球变化方面的教学和研究工作,具体研究内容为:(1)利用GRACE、GNSS等观测手段监测并理解陆地冰/水储量变化;(2)利用GNSS技术监测大气水汽含量。主持国家自然科学基金项目2项、湖北省自然科学基金项目1项、博士后基金项目2项,参与国家自然科学基金项目等10余项。在EPSL、JGR、JOG、JOH等国际顶级地学期刊发表论文50余篇,论文总被引次数1500余次(Google Scholar)。受邀在国际顶级地学会议AGU、EGU、AOGS、CGU上作口头报告10余次。获得了2020年度教育部高等学校科学研究优秀成果奖科技进步一等奖(排序3)、2023年湖北省科技进步一等奖(排序13)、2023年测绘学会青年测绘科技创新人才奖、2023年测绘学会测绘科学技术奖二等奖(排名8)和2018年度全国博士后学术论坛优秀论文奖。获得了2019年第十届全国高等学校测绘类专业青年教师讲课竞赛一等奖、测绘学院青年教师教学竞赛一等奖(2020)和二等奖(2022)。

教育与研究经历

2007/09~2011/06:武汉大学测绘学院,测绘工程,学士

2011/09~2013/06:武汉大学测绘学院,大地测量学与测量工程,硕士

2013/09~2016/06:武汉大学测绘学院,大地测量学与测量工程,博士

2015/11~2016/01:香港理工大学,访问学生

2016/02~2018/04:香港中文大学,地球系统科学课程,研究助理、博士后

2017/08~2019/07:武汉大学测绘学院,重点资助博士后

2019/08~2021/07:武汉大学测绘学院,特聘副研究员

2021/08~今 :武汉大学测绘学院,副教授

教学情况

主讲《网络程序设计》与《误差理论与测量平差基础》等课程

荣誉和奖励:

2023年湖北省科技进步一等奖(排序13)

2023年测绘学会青年测绘科技创新人才奖

2023年测绘学会测绘科学技术奖二等奖(排名8)

2022年武汉大学测绘学院第十二届青年教师教学竞赛二等奖

2021年“湖北青年五四奖章集体”

2020年度教育部科技进步一等奖(排名3)

2020年武汉大学测绘学院第十一届青年教师教学竞赛一等奖

2019年第十届全国高等学校测绘类专业青年教师讲课比赛一等奖

2018 “地球空间信息科学与生态环境保护”全国博士后学术论坛“优秀论文奖”

科研项目:

  1. 国家自然科学基金面上项目,基于现代大地测量技术的格陵兰冰川质量变化及其大气驱动机制研究,2021/01~2024/12,主持
  2. 国家自然科学基金青年项目,多维地基GNSS水汽反演与数值同化及其在对地观测技术中的应用,2018/01~2020/12,主持
  3. 湖北省自然科学基金面上项目,全球陆地水储量变化与水汽输送之间的关联研究,2021/10~2023/09,主持
  4. 博士后基金特别资助项目,格陵兰岛冰川质量的年际变化及其对长期变化估计的影响,2019/06~2020/12,主持
  5. 博士后基金一等资助项目,GNSS水汽反演与数值同化技术及其应用研究,2018/05~2020/04,主持
  6. 中央高校基本科研业务费-青年项目,中国典型区域陆地水储量变化特征及机理研究,2020/01~2021/12,主持
  7. 中央高校基本科研业务费-拔尖创新人才培育项目,联合多源大地测量技术监测极区冰盖及其对气候变化的响应,2022/01~2023/12,主持

授权专利

  • 1.一种正常高安全服务方法、系统及数据播发服务器(发明专利,授权号: ZL202311327093.4;发明人:张琦,姚宜斌,许超钤,张良,孔建,张豹;申请日:2023年10月13日,公告日:2024年01月02日)
  • 2.基于神经网络且顾及地表差异的MODIS水汽反演方法(发明专利,授权号:ZL202210855024.X;发明人:张豹,马雄伟,姚宜斌,范峥研;申请日:2022-07-20;公告日:2023年03月07日)

发表论文(下划线为代表作,*为通讯作者):

2024

  1. Liu, Y., Zhang, B.*, Yao, Y., Zhao, Q., Xu, C., Yan, X., Zhang, L. (2024).Revealing the spatiotemporal patterns of water vapor and its link to North Atlantic Oscillation over Greenland using GPS and ERA5 data. Science of the Total Environment,accepted.

2023

  1. Qin, Y., Wang, Y., Zhang, B.*, Fang, X., Yao, Y., Ma, X. (2023). A Novel Model Integrating the Spherical Cap Harmonic Analysis with the XGBoost Algorithm to Improve the MODIS NIR PWV. IEEE Transactions on Geoscience and Remote Sensing,61: 1-12, doi: 10.1109/TGRS.2023.3326659.
  1. Wang, Z., Zhang, B.*, Yao, Y., Zhang, W. (2023). GRACE and mass budget method reveal decelerated ice loss in east Greenland in the past decade. Remote Sensing of Environment,286:113450.

2022

  1. Yan, X., Zhang, B.*, Yao, Y., Yin, J., Wang, H., & Ran, Q. (2022). Jointly using the GLDAS 2.2 model and GRACE to study the severe Yangtze flooding of 2020.   Journal of Hydrology.  127927.
  2. Zhang, B.,Yao, Y.* and He, Y. (2022). Bridging the data gap between GRACE and GRACE-FO using artificial neural network in Greenland, Journal of Hydrology, 2022.
  3. Lai, Y., Zhang, B.*, Yao, Y., Liu, L., Yan, X., He, Y., & Ou, S. (2022). Reconstructing the data gap between GRACE and GRACE follow-on at the basin scale using artificial neural network. Science of The Total Environment, 153770.
  4. Lai, Y., Zhang, B.*, Yao, Y., & Li, J. (2022). Quantitatively Analyzing the Impacts of Seasonal Water Storage Changes in the Three Gorges Reservoir on Nearby Crust. Pure and Applied Geophysics, 1-15.
  5. Ran, Q., Zhang, B.*, Yao, Y. et al. (2022) Editing arcs to improve the capacity of GNSS-IR for soil moisture retrieval in undulating terrains. GPS Solution, 26(19), https://doi.org/10.1007/s10291-021-01206-y.
  6. Ma, X., Yao, Y.*, Zhang, B., & Du, Z. (2022). FY-3A/MERSI precipitable water vapor reconstruction and calibration using multi-source observation data based on a generalized regression neural network. Atmospheric Research, 265, 105893.
  7. 29. Ma, X., Yao, Y., Zhang, B., Qin, Y., Zhang, Q., & Zhu, H. (2022). An Improved MODIS NIR PWV Retrieval Algorithm Based on an Artificial Neural Network Considering the Land-Cover Types. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-12.

2021

  1. Zhang, B., Yao, Y.*, Liu, L., Yang, Y. (2021). Interannual ice mass variations over the Antarctic ice sheet from 2003 to 2017 were linked to El Niño-Southern Oscillation. Earth and Planetary Science Letters.
  2. Zhang, B., Yao, Y.* (2021). Precipitable water vapor fusion based on a generalized regression neural network. Journal of Geodesy.
  3. Yan, X., Zhang, B.*, Yao, Y., Yang Y., Li, J., Ran, Q. (2021). GRACE and land surface models reveal severe drought in eastern China in 2019, Journal of Hydrology, 126640.
  4. Sun, Z., Zhang, B.*, & Yao, Y. (2021). Improving the Estimation of Weighted Mean Temperature in China Using Machine Learning Methods. Remote Sensing, 13(5), 1016.
  5. Xiong, Z. Zhang, B.*, Sang, J., Sun, X., Wei, X. (2021) Fusing Precipitable Water Vapor Data in China at Different Timescales Using an Artificial Neural Network. Remote Sensing. 13(9), 1720.
  6. Ma, X., Yao, Y.*, Zhang, B., Yang, M., & Liu, H. (2021). Improving the accuracy and spatial resolution of precipitable water vapor dataset using a neural network-based downscaling method. Atmospheric Environment, 118850.

2020

  1. Zhang, B., Liu, L., Yao, Y.*, van Dam, T., & Khan, S. A. (2020). Improving the estimate of the secular variation of Greenland ice mass in the recent decades by incorporating a stochastic process. Earth and Planetary Science Letters, 549, 116518.
  2. Li, J., Zhang, B.*, Yao, Y., Liu, L., Sun, Z., & Yan, X. (2020). A Refined Regional Model for Estimating Pressure, Temperature, and Water Vapor Pressure for Geodetic Applications in China. Remote Sensing, 12(11), 1713.
  3. Shfaqat A. Khan, Anders A. Bjørk, Jonathan L. Bamber, Mathieu Morlighem, Michael Bevis, Kurt H. Kjær, Jérémie Mouginot, Anja Løkkegaard, David M. Holland, Andy Aschwanden, Bao Zhang, Veit Helm, Niels J. Korsgaard, William Colgan, Nicolaj K. Larsen, Lin Liu, Karina Hansen, Valentina Barletta, Trine S. Dahl-Jensen, Anne Sofie Søndergaard, Beata M. Csatho, Ingo Sasgen, Jason Box & Toni Schenk. (2020). Centennial response of greenland’s three largest outlet glaciers. Nature Communications, 11(1).
  4. Li, W., Shum, C. K., Li, F., Zhang, S., Ming, F., Chen, W., Zhang, B., Lei J., Zhang, Q. (2020). Contributions of Greenland GPS Observed Deformation from Multisource Mass Loading Induced Seasonal and Transient Signals. Geophysical Research Letters, 47(15), e2020GL088627.

2019

  1. Zhang, B.*, Liu, L., Khan, S. A., van Dam, T., Bjørk, A. A., Peings, Y., … & Noël, B. (2019). Geodetic and model data reveal different spatio-temporal patterns of transient mass changes over Greenland from 2007 to 2017. Earth and Planetary Science Letters, 515, 154-163.
  2. Zhao, Q., Zhang, B.*, Yao, Y., Wu, W., Meng, G., & Chen, Q. (2019). Geodetic and hydrological measurements reveal the recent acceleration of groundwater depletion in North China Plain. Journal of Hydrology, 575, 1065-1072.
  3. Zhang, B., Yao, Y.*, Xin, L., & Xu, X. (2019). Precipitable water vapor fusion: an approach based on spherical cap harmonic analysis and Helmert variance component estimation. Journal of Geodesy, 93(12), 2605-2620.
  4. Sun, Z., Zhang, B.*, & Yao, Y. (2019). An ERA5-based model for estimating tropospheric delay and weighted mean temperature over China with improved spatiotemporal resolutions. Earth and Space Science, 6(10), 1926-1941.
  5. Sun, Z., Zhang, B.*, & Yao, Y. (2019). A Global Model for Estimating Tropospheric Delay and Weighted Mean Temperature Developed with Atmospheric Reanalysis Data from 1979 to 2017. Remote Sensing, 11(16), 1893.
  6. Xiong, Z., Zhang, B.*, & Yao, Y. (2019). Comparisons between the WRF data assimilation and the GNSS tomography technique in retrieving 3-D wet refractivity fields in Hong Kong. In Annales Geophysicae (Vol. 37, No. 1, pp. 25-36). Copernicus GmbH.
  7. Zhang, T., Shen, W. B., Wu, W., Zhang, B., & Pan, Y. (2019). Recent Surface Deformation in the Tianjin Area Revealed by Sentinel-1A Data. Remote Sensing, 11(2), 130.

2018

  1. Zhang, B.*, Zhang, E., Liu, L., Khan, S. A., van Dam, T., Yao, Y., … & Helm, V. (2018). Geodetic measurements reveal short-term changes of glacial mass near Jakobshavn Isbræ (Greenland) from 2007 to 2017. Earth and Planetary Science Letters, 503, 216-226.

2017

  1. Zhang, B., Liu, L.*, Khan, S. A., van Dam, T., Zhang, E., & Yao, Y. (2017). Transient variations in glacial mass near Upernavik Isstrøm (west Greenland) detected by the combined use of GPS and GRACE data. Journal of Geophysical Research: Solid Earth, 122(12), 10-626.
  2. Zhang, B., Fan, Q.*, Yao, Y., Xu, C., & Li, X. (2017). An Improved Tomography Approach Based on Adaptive Smoothing and Ground Meteorological Observations. Remote Sensing, 9(9), 886.
  3. 张豹, 姚宜斌*, 胡羽丰, & 许超钤. (2017). 高斯函数在香港地区对流层层析实验中的应用. 武汉大学学报· 信息科学版, 42(8), 1047-1053.

2016

  1. Zhang, B., Yao, Y.*, Fok, H. S.*, Hu, Y., & Chen, Q. (2016). Potential seasonal terrestrial water storage monitoring from GPS vertical displacements: A case study in the lower three-rivers headwater region, China. Sensors, 16(9), 1526.
  2. Lan, Z., Zhang, B.*, & Geng, Y. (2016). Establishment and analysis of global gridded Tm− Ts relationship model. Geodesy and Geodynamics, 7(2), 101-107.
  3. Yao, Y., Zhang, B., Xu, C., He, C., Yu, C., & Yan, F. (2016). A global empirical model for estimating zenith tropospheric delay. Science China Earth Sciences, 59(1), 118-128.
  4. Yao, Y. B., Zhao, Q., & Zhang, B. (2016). A method to improve the utilization of GNSS observation for water vapor tomography. In Annales Geophysicae (Vol. 34, No. 1, pp. 143-152). Copernicus GmbH.
  5. Yao, Y., Hu, Y., Yu, C., Zhang, B., & Guo, J. (2016). An improved global zenith tropospheric delay model GZTD2 considering diurnal variations. Nonlinear Processes in Geophysics, 23(3), 127-136.
  6. 姚宜斌, 胡羽丰, & 张豹. (2016). 利用多源数据构建全球天顶对流层延迟模型. 科学通报, (24), 2730-2741.
  7. 姚宜斌, 郭健健, 张豹, 胡羽丰. (2016). 湿延迟与可降水量转换系数的全球经验模型[J]. 武汉大学学报·信息科学版, 41(1):46-51.
  8. 姚宜斌, 雷祥旭, 张良, 张豹, 彭海, 张佳华. (2016). 青藏高原地区1979-2014年大气可降水量和地表温度时空变化特征分析[J]. 科学通报, 61(13):1462-1477.

2015

  1. 姚宜斌, 张豹, 严凤, 许超钤. (2015). 两种精化的对流层延迟改正模型[J]. 地球物理学报, 58(5):1493-1500.
  2. 张豹,姚宜斌,许超钤. (2015). 一种可用于估计全球水汽标高的经验模型[J]. 测绘学报, 44(10):1086-1091.
  3. Yao, Y., Xu, C., Zhang, B., & Cao, N. (2015). A global empirical model for mapping zenith wet delays onto precipitable water vapor using GGOS Atmosphere data. Science China Earth Sciences, 58(8), 1361-1369.
  4. 姚宜斌, 刘劲宏, 张豹, 何畅勇. (2015). 地表温度与加权平均温度的非线性关系[J]. 武汉大学学报·信息科学版,40(1):113-116.
  5. Yao, Y., Xu, C., Shi, J., Cao, N., Zhang, B., & Yang, J. (2015). ITG: A new global GNSS tropospheric correction model. Scientific reports, 5(1), 1-9.

2014

  1. Yao, Y., Zhang, B., Xu, C., & Yan, F. (2014). Improved one/multi-parameter models that consider seasonal and geographic variations for estimating weighted mean temperature in ground-based GPS meteorology. Journal of Geodesy, 88(3), 273-282.
  2. Yao, Y., Zhang, B., Xu, C., & Chen, J. (2014). Analysis of the global Tm–Ts correlation and establishment of the latitude-related linear model. Chinese science bulletin, 59(19), 2340-2347.
  3. Yao, Y., Xu, C., Zhang, B., & Cao, N. (2014). GTm-III: a new global empirical model for mapping zenith wet delays onto precipitable water vapour. Geophysical Journal International, 197(1), 202-212.

2013

  1. Yao, Y. B., Zhang, B., Yue, S. Q., Xu, C. Q., & Peng, W. F. (2013). Global empirical model for mapping zenith wet delays onto precipitable water. Journal of Geodesy, 87(5), 439-448.
  2. 姚宜斌, 何畅勇, 张豹, 许超钤. (2013). 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报,56(7):2219-2227.
  3. 许超钤, 姚宜斌, 张豹, 严凤. (2013). 2010-08-01太阳风暴对电离层及GPS测量的影响分析[J]. 武汉大学学报·信息科学版, 38(6):690-693.
  4. 姚宜斌, 彭文飞, 孔建, 张豹. 2013 精密单点定位模糊度固定效果分析[J]. 武汉大学学报·信息科学版, 38(11):1281-1285.